

LA-UR-19-25091

Approved for public release; distribution is unlimited.

Title: Test Standards: Displacement Damage

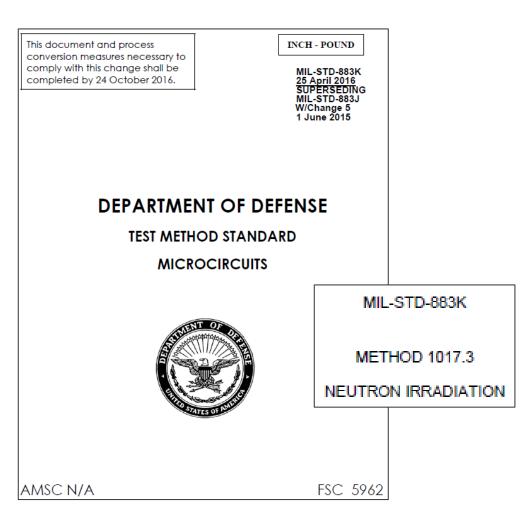
Author(s): Auden, Elizabeth Catherine

Intended for: Lecture for 2019 LANL Radiation Effects Summer School

Issued: 2019-06-04

Test Standards: Displacement Damage

LANL Radiation Effects Summer School



Elizabeth Auden, ISR-3

Overview

- MIL-STD-883K, Method 1017.3: neutron irradiation
 - Objectives
 - Equipment
 - Test instruments
 - Radiation source
 - Dosimetry
 - Procedure
 - Documentation

Purpose (Method 1017.3, 1)

Displacement damage neutron tests are <u>destructive</u>.

"Determine the susceptibility of semiconductor devices to non-ionizing energy loss (NIEL) degradation"

Objectives

- Measure electrical degradation as a function of neutron fluence Φ
- Determine whether device performance is still acceptable after exposure to fluence Φ

Parts to test

- Diodes: increased leakage current
- Transistors:
 - Decreased gain (BJTs)
 - Increased channel resistance (MOSFETs),
- Integrated circuits:
 - Output voltage changes (voltage regulators)
 - Increased offset voltage (op amps)

Input Offset Voltage (mV) gamma rays Radiation level guaranteed by manufacturer 0.01 100

200 Me

protons

Equivalent Total Dose [krad(Si)]

Catastrophic

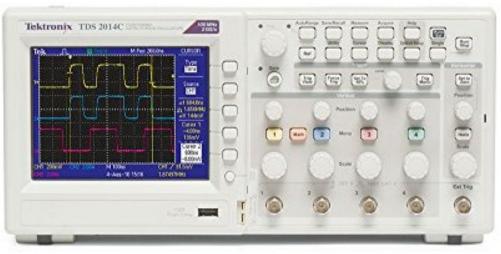
Cobalt-60

failure between

50 and 70 krad

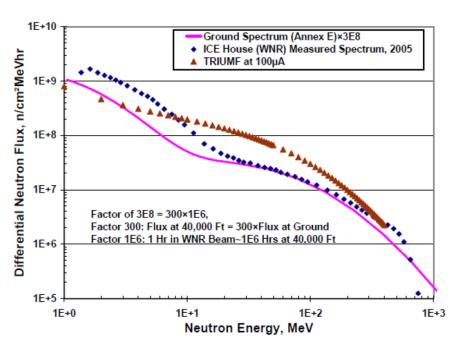
1000

Linear technology


RH1056 op-amp (JFET input stage)

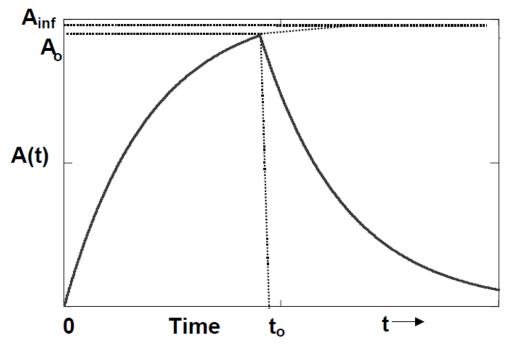
After Rax, Johnston, and Miyahira, TNS 46, 1999

Apparatus: Test instruments (Method 1017.3, 2.1)


- Test instruments: equipment needed to measure degradation in specific electrical parameters as a function of fluence Φ
 - Power supplies
 - Multimeters, digital voltmeters, picoammeters
 - Parameter analyzers

Apparatus: Radiation source (Method 1017.3, 2.2)

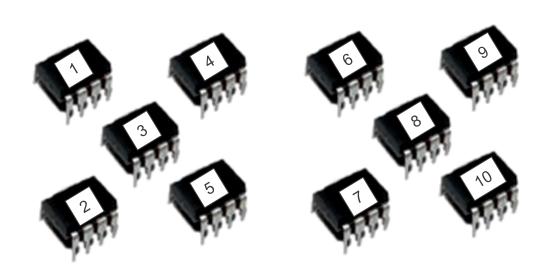
- Radiation source: well-characterized neutron source
 - Broad energy spectrum: fast burst reactor, unmoderated tungsten spallation source
 - Monoenergetic: deuterium-deuterium (DD) or deuterium-tritium (DD) generators
 - **Note:** ionizing radiation must be characterized before the test; don't use sources that generate total ionizing dose greater than 500 rad(Si) per 1×10¹² n/cm³



Monoenergetic DT neutron generator made by ThermoFisher

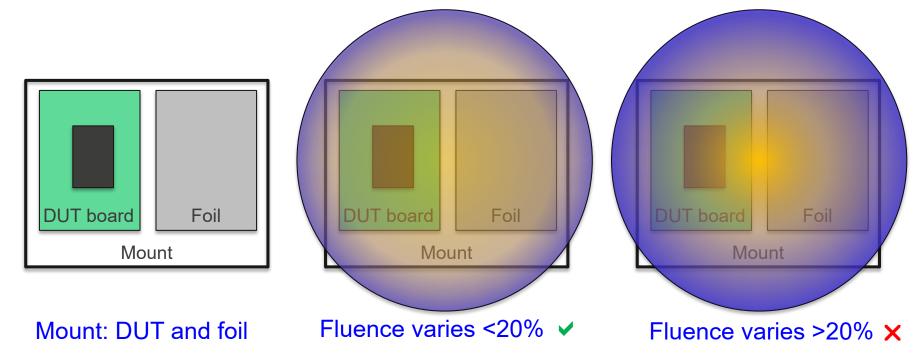
Apparatus: Dosimetry equipment (Method 1017.3, 2.3)

- Dosimetry equipment: (as required): equipment needed to measure
 1 MeV equivalent fluence Φ (note: facility may provide dosimetry)
 - Fluence: fast neutron activation foils: 32S, 54Fe, 58Ni plus foil counting equipment
 - Dose: thermoluminescence dosimeters (TLDs) plus readout equipment
 - **Note:** energy spectrum of neutrons must be known to use foils; see ASTM E 722 for method to characterize unknown neutron energy spectrum


Foil activity vs time, after Knoll, Radiation Detection and Measurement, 2000

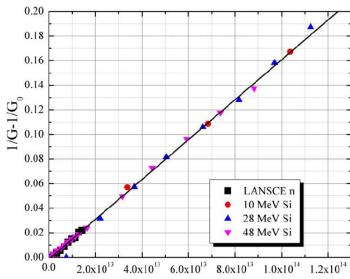
Procedure: Safety & Part Selection (Method 1017.3, 3.1, 3.2)

• Safety: irradiated parts may be activated; follow radiation facility's health physics or radiation safety regulations for handling and storage


Test samples:

- Selection: randomly select at least 10 parts that meet rated electrical performance
- Serialization: add serial numbers for comparison of pre- and post-exposure data

Procedure: Pre-exposure (Method 1017.3, 3.3)


- Pre-exposure (Method 1017.3, 3.3):
 - Electrical tests (Method 1017.3, 3.3.1): measure and record electrical parameters being evaluated for degradation before exposure
 - Exposure setup (Method 1017.3, 3.3.2):
 - Mount parts unbiased with all leads shorted OR all leads open (MOS parts must be shorted)
 - Parts and dosimeters should be mounted together
 - Fluence should not vary by more than 20% across mounted parts and dosimeters

Procedure: Exposure (Method 1017.3, 3.4)

• Exposure:

- Accumulated fluence Φ:
 - irradiate parts to 1MeV equivalent fluence specified by application requirements
 - Use new set of dosimeters (if required) for each exposure level
- Ambient temperature: 24 °C ± 6 °C
- Incidental dose: use shielding to reduce gamma exposure from neutron source if TID absorbed by part will exceed 10% of part's rated dose value

1 MeV n equivalent fluence (n/cm²)

Inverse gain vs 1 MeV eq. neutron fluence, after Vizkelethy et al. SAND2006-7746, 2006

JANSM

Reliability Level

JANSM - 3K Rads (Si)

JANSD - 10K Rads (Si)

JANSP - 30K Rads (Si)

JANSL - 50K Rads (Si)

JANSR - 100K Rads (Si)

JANSF - 300K Rads (Si)

Example of Joint Army Navy ("JAN") parts with markings indicating reliability to different total doses

Procedure: Post-exposure (Method 1017.3, 3.5)

- Electrical tests (Method 1017.3, 3.5.1):
 - Select parts for electrical tests
 - Measure and record electrical parameters being evaluated for degradation
- Anomaly investigation (Method 1017.3, 3.5.2):
 - Identify parts exhibiting anomalous behavior (e.g., non-linear degradation)
 - Perform failure analysis on these parts per method 5003, MIL-STD-883
 - Goal: identify failure mechanism (electrical, mechanical, chemical)
 - Data to provide to failure analysis investigation:
 - Test conditions: type of test, how long part was in service, temperature, stress conditions during failure
 - System conditions: location of failure in equipment, date, identification of test or inspection when failure was noted, unusually environmental conditions or system anomalies, equipment symptoms
 - General device info: part type numbers, serial numbers, date code, size of production or inspection lot (if available), any other identifying info

Documentation: Request (Method 1017.3, 4)

Request for test:

- Part types
- Quantity of parts to test
- Electrical parameters to measure in pre- and post-exposure tests
- Criteria for pass, fail, and record actions on tested parts
- Criteria for anomalous behavior designation
- Radiation exposure levels
- Test instrument requirements
- Radiation dosimetry requirements (if other than foils and TLDs)
- Ambient temperature (if other than 24 °C ± 6 °C)
- Requirements for data reporting and submission

Documentation: Report (Method 1017.3, 3.6)

Report:

- Part information:
 - Part type number
 - Serial number
 - Manufacturer
 - Controlling specification
 - Date code
 - Any other identifying information provided by manufacturer
- Test data sheet(s):
 - Radiation test date
 - Electrical test conditions
 - Radiation exposure levels
 - Ambient conditions (temperature, humidity, pressure as applicable)
 - TEST DATA
 - Any parameter measurement circuits used other than those specified
 - Anomalous incidents during test (in footnotes to data)